

Universal DNA Library Plus Prep Kit for Illumina 使用说明书

【产品名称】

Universal DNA Library Plus Prep Kit for Illumina

【货号/规格】

K015-A (24 rxns) : K015-B (96 rxns)

【产品简述】

Universal DNA Library Plus Prep Kit for Illumina是一款专为Illumina高通量测序平台设计 的片段化酶法文库制备试剂盒,在#K014试剂盒的基础上将DNA片段化、末端修复以及末 端加dA尾合并为一步,产物无需纯化,直接进行接头连接、文库富集和分选。它能够将100pg 至1µg的片段化双链input DNA转化为适配Illumina平台的专用文库,根据目标插入片段大 小调整片段化时间,即可得到所需片段大小文库。试该试剂盒适用于多种样本类型的 PCR/PCR-Free文库构建,并且与靶向捕获流程兼容。本品经过严格的质量检测,从而确 保文库制备的质量和效率。

【样本类型】

应用	样本类型	推荐投入量
全基因组测序	高质量复杂基因组	50ng-1μg
靶向捕获测序	高质量复杂基因组	10ng-1µg
全基因组/靶向捕获测序	FFPE DNA	≥50ng
全基因组测序	微生物基因组	1ng-1μg
全基因组测序(PCR-free)	高质量 DNA	≥50ng(不分选)
		≥200ng(分选)

【储存条件】

-20°C。

【组成成分】

组分	K015-A (24 rxns)	K015-B (96 rxns)
FEA Enzyme Mix V2	240 μΙ	960 μl
FEA Buffer V2	120 μΙ	480 µl

Fast DNA Ligase V2	120 μΙ	480 μl
Fast Ligation Buffer V2	600 μl	4×600 μl
2X HIFI PCR Mix	600 μl	4×600 μl
Primer Mix 3	120 µl	480 μl
Neutralization Buffer	120 µl	480 μl
Control DNA (100 ng/µl)	10 μΙ	10 μΙ

备注:分选磁珠推荐使用#NC1011 GDSPure DNA Selection Magbeads 或 AMPure XP beads。

【注意事项】

1. 客户可以针对 Illumina 测序平台选择合适的接头,接头过量将会导致接头二聚体的形成,接 头不足会导致文库产出低,因此,合适的接头浓度决定了文库的浓度和质量。不同的 DNA 投入 量对应的推荐接头浓度见下表:

表1 Adapter 推荐的使用浓度

DNA 投入量	Adapter 推荐浓度	Adapter:Insert 摩尔比*
1 μg	10 μΜ	10:1
100 ng	5-10 μM	30:1
10 ng	2 μΜ	100:1
1 ng	0.5 μΜ	200:1
100 pg	0.1 μΜ	300:1

^{*} Adapter:Insert摩尔比指的是其他来源的Adapter摩尔数和Input DNA摩尔数的比值,可参照以下公式粗略计 算Input DNA摩尔数: Input DNA摩尔数(pmol)≈Input DNA质量(ng)/[0.66×Input DNA平均长度(bp)]

2. 严格控制扩增循环数对文库产出尤为重要,下表为不同的DNA投入量对应的推荐扩增循环 数:

表2 不同样品投入量对应的推荐扩增循环数

to not DAIA	推荐的扩增循环数	
Input DNA	100ng 文库	1μg 文库
1μg	/	0-2
500ng	/	2-3

^{*}Adapter的质量和浓度很大程度上影响了文库的产出,尤其是低投入量的建库。应选用优质来源的Adapter, 连接前用0.1X TE提前稀释成合适浓度,现配现用,保证每次加样量为固定的5µl,避免加样错误,并尽量避 免反复冻融。

250ng	/	3-5
100ng	0-2	4-6
50ng	2-4	5-8
10ng	4-6	9-11
1ng	9-11	13-15
100pg	13-15	16-18

注:上表仅供参考。当DNA质量较差或者片段化时间不同时,需适当调整循环数以获取足量文库。

【标准建库流程】

A 片段化、末端修复、加dA尾/Fragmentation, End Preparation & dA-tailing

这一步骤将Input DNA末端补平,并在5'端进行磷酸化和3'端加dA尾。

- 1. 实验开始前,请确认模板DNA溶解于何种溶剂(推荐使用灭菌超纯水),该溶剂是否含有EDTA;如不含EDTA,直接进行步骤3;如含有EDTA则按照步骤2对样品进行预处理。
- 2. 如含有EDTA,可使用2.2X磁珠对模板DNA进行纯化,灭菌超纯水洗脱;或根据片段化体系中EDTA的终浓度,加入相应体积的Neutralization Buffer将EDTA中和。

片段化体系EDTA终浓度 = DNA溶液中EDTA浓度 × DNA使用体积/50 μ l;例如DNA溶于含有1 mM EDTA的 TE中,一次建库使用10 μ l,则EDTA终浓度为1 mM × 10 μ l/50 μ l = 0.2 mM。

Neutralization Buffer体积
5 μΙ
4 μΙ
3 µl
2.5 µl
2 μΙ
1 μΙ
0.5 μΙ
0 μΙ

- 3. 将FEA Buffer V2、FEA Enzyme Mix V2取出,解冻并充分混匀、短暂离心收集至管底,置于冰上备用。以下所有步骤均在冰上操作。
- 4. 在灭菌200 µI PCR管中配制如下反应:

试剂	体积
Input DNA	Χμl

Neutralization Buffer	ΧμΙ
FEA Buffer V2	5 µl
ddH₂O	Το 40 μΙ

- 注:当样本数量较多,且样本中含有EDTA时,需要计算加入不同体积的Neutralization Buffer。可参考附录
- 二, 多样本片段化方案。
- 5. 向每个样品中加入10 µl FEA Enzyme Mix V2, 用移液枪小心吹打混匀,短暂离心将所有液体移至管底。立即进行下一步。
- 6. 在热循环仪中进行如下反应:

温度	时间
热盖 <i>105</i> ℃	ON
37℃	参照下表
65 ℃	30min
4 ℃	∞

注: 片段化时间需依据Input DNA质量及目标片段大小而定:

预期插入片段大小	片段化时间
150 bp	20-30 min
250 bp	15-20 min
350 bp	10-15 min
550 bp	6-10 min

B 接头连接/Adapter Ligation

这一步骤将在End Preparation产物末端连接Adapter。

- 1. 根据Input DNA量按表1稀释Adapter至合适浓度。
- 2. 将Fast Ligation Buffer V2、Fast DNA Ligase V2从-20℃取出,解冻并充分混匀、短暂离心收集至管底,置于冰上备用。
- 3. 在步骤A的PCR管中配制如下反应:

试剂	体积
上一步产物	50 μΙ
Fast Ligation Buffer V2	25 µl
Fast DNA Ligase V2	5 μΙ
Adapter X	5 μΙ
ddH₂O	15 µl

Total 100 μl

- 4. 用移液枪小心吹打混匀, 短暂离心将所有液体移至管底。
- 5. 在热循环仪中进行如下反应:

温度	时间
热盖 <i>105</i> ℃	ON
20℃	15min
4 ℃	∞

- 注:当Input DNA量较低时,可尝试将连接时间延长一倍。但延长反应时间可能会导致Adapter Dimer增加,必要时需同时调整Adapter使用浓度。
- 6. 使用GDSPure DNA Selection Magbeads纯化产物:
- 6.1. 取100µ/连接产物加入合适的PCR管中。
- 6.2. 涡旋磁珠使磁珠混匀,加入60µI磁珠悬液,用移液器轻轻吹打10次混匀,室温静置5min。
- 6.3. 将PCR管置于磁力架上至溶液变得澄清,用移液器吸去上清,弃上清。
- 6.4. 保持PCR管在磁力架上,加入 200µl 80%新鲜配制的乙醇溶液,请勿吹打磁珠。室温静置30s,用移液器吸去上清,弃上清。
- 6.5. 重复步骤 6.4 一次。最后一次洗涤完成时应尽量吸取干净洗涤液。
- 6.6. 保持PCR管在磁力架上, 自然风干至磁珠表面无明显光泽。
- 注意:该步骤应避免磁珠干燥过度而影响洗脱效率.磁珠表面有裂痕即代表干燥过度。
- 6.7. 将PCR管从磁力架上取下,进行洗脱:

如纯化产物不进行双轮磁珠分选:向管中加入22.5µ/洗脱缓冲液(10mM Tris-HCl, pH8.0-8.5),用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5min。将PCR管置于磁力架上至溶液变得澄清,将20u/上清液转移到新的EP管中。

如纯化产物进行双轮磁珠分选:向管中加入105µl洗脱缓冲液(10mM Tris-HCl, pH8.0-8.5),用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5min。将PCR管置于磁力架上至溶液变得澄清,将100ul上清液转移到新的EP管中,根据表3双轮磁珠分选条件进行长度分选。

注:此处样品可于4℃稳定保存一周。长期保存置于-20℃,避免不必要的反复冻融。

C 文库扩增/Library Amplification

这一步骤将对纯化或长度分选后的Adapter Ligation产物进行PCR扩增。是否需要进行这一步骤取决于Input DNA量、Adapter是否为完整长度、应用需要等因素。如使用非完整长度 Adapter,必须进行这一步骤。如使用完整长度 Adapter,当Input DNA < 50 ng时,推荐进

行Library Amplification; 当Input DNA ≥50 ng或者不需要进行文库扩增富集时,此步骤可不进行,直接进入文库质控/Library Quality Control。

1. 将*Primer Mix* 3、2X HIFI PCR Mix 解冻后颠倒混匀,于灭菌200 μl PCR管中配制如下反应:

试剂	体积
纯化或分选后的连接产物	20 μl
2X HIFI PCR Mix	25 μl
Primer Mix 3	5 μΙ
Total	50 μl

- 2. 用移液枪小心吹打混匀,短暂离心将所有液体移至管底。
- 3. 在热循环仪中进行如下反应:

温度	时间	循环数					
95℃	3 min	-					
98℃	20 sec						
60 ℃	15 sec	根据表 2 选择适当循环数					
72 ℃	30 sec						
72 ℃	5 min	-					
4℃	∞	-					

- 4. 如需进行长度分选,参考附一:双轮磁珠分选进行;如不需要进行长度分选,使用 GDSPure DNA Selection Magbeads对反应产物进行纯化:
- 4.1. 取50 µI扩增产物加入合适的PCR管中。
- 4.2. 涡旋磁珠使磁珠混匀,加入45μ/磁珠悬液,用移液器轻轻吹打10次混匀,室温静置5 min。
- 4.3. 将PCR管置于磁力架上至溶液变得澄清,用移液器吸去上清,弃上清。
- 4.4. 保持PCR管在磁力架上,加入 200 μl 80%新鲜配制的乙醇溶液,请勿吹打磁珠。室温静置30 sec,用移液器吸去上清,弃上清。
- 4.5. 重复步骤 4.4 一次。最后一次洗涤完成时应尽量吸取干净洗涤液。
- 4.6. 保持PCR管在磁力架上, 自然风干至磁珠表面无明显光泽。
- 注意: 该步骤应避免磁珠干燥过度而影响洗脱效率, 磁珠表面有裂痕即代表干燥过度。
- 4.7. 将PCR管从磁力架上取下,进行洗脱:

如纯化产物不进行靶向捕获: 向管中加入22.5 μ/洗脱缓冲液 (10mM Tris-HCl, pH8.0-8.5)

或 ddH_2O ,用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5 min。将 PCR管置于磁力架上至溶液变得澄清,将20~ul上清液转移到新的EP管中。

如纯化产物进行靶向捕获:向管中加入 $22.5 \mu l$ ddH_2O ,用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5 min。将PCR管置于磁力架上至溶液变得澄清,将20 ul上清液转移到新的EP管中。

注:此处样品可于4℃稳定保存一周。长期保存置于-20℃、避免不必要的反复冻融。

D 文库质控/Library Quality Control

通常情况下,构建好的文库可通过长度分布检测和浓度检测来进行质量评价。

附一: 双轮磁珠分选

1. 为了满足不同应用的需要,建库过程中通常需要进行双轮磁珠分选以控制文库Insert Size的分布范围。分选方案执行位置的选择和优缺点参见表3。应保证分选方案执行位置的唯一性,进行两次或者两次以上的分选会导致文库复杂度和产出严重下降。

分选方		

分选方案执行位置	适用情况	优点	缺点	适用样本列举			
Adapter Ligation	Input DNA分布范	减少短片段DNA丢	文库分布范围	Fragmentation适度的			
之后	围适合且量充足。 失 略宽。		略宽*	基因组DNA或分布范			
				围较宽的FFPE DNA			
Library	Input DNA量少♭	减少建库过程中	文库分布范围	-			
Amplification之后		Input DNA的损失,	宽				
		提高文库复杂度					
建库过程中	Input DNA分布范	减少建库过程中	无法控制文库	片段化适合的基因组			
不进行分选	围已满足建库要	Input DNA的损失,	Insert Size	DNA			
	求;Input DNA量少	提高文库复杂度					

a.双轮磁珠分选效果受DNA末端情况影响,Input DNA末端的单链部分以及"Y"型Adapter的单链非互补区域会导致分选产物长度分布范围变宽。

b.推荐当Input DNA量≥100 ng时,选择在Adapter Ligation之后进行分选;当Input DNA量<100 ng或样品拷贝数有限时,将分选置于Library Amplification之后。

2.双轮磁珠分选是通过控制磁珠的使用量来进行DNA长度选择的。其基本原理为:第一轮磁珠结合分子量较大的DNA,通过丢弃磁珠去除这部分产物;第二轮磁珠结合剩余产物中分子量较大的DNA,通过丢弃上清去除分子量较小的DNA。初始样品中的很多组分都会干扰双轮磁珠分选效果。因此,当分选方案执行位置不同时,双轮磁珠使用量也不尽相同。可根据预期文库Insert Size和分选方案执行位置在表4中选择最适分选参数。

表4 文库长度分选

八水之中从仁仁甲卜石丛	T24.T4L.#A.244	预期文库大小(bp)							
分选方案执行位置与条件	磁珠轮数	150	200	250	300	350	400	450	500
接头连接之后分选	一轮XµI	78	68	65	59	56	53	51	50
<i>(</i> 样品体积100 μl)	二轮YµI	20	20	15	15	12	12	10	10
文库扩增之后分选	一轮XµI	78	70	63	55	50	46	45	44
/样品体积补至100 μl)	二轮YµI	20	20	20	20	20	20	20	15

3. 当使用非完整长度Adapter时,连接之后的分选方案执行条件与完整Adapter不同,此时可根据下表选择最适分选参数。

八 <u>小</u>	7¥74 + ∧ ¥L	预期	文库大	:小(<i>t</i>	p)				
分选方案执行位置与条件 	磁珠轮数	150	200	250	300	350	400	450	500
接头连接之后分选	一轮 <i>XμI</i>	100	90	75	65	60	55	53	50
<i>(</i> 样品体积100 μl)	二轮YµI	20	20	20	20	20	20	20	18

使用磁珠进行长度分选时,Insert Size越大最终产物分布越宽。当Insert Size > 700 bp时,双轮磁珠几乎不具有分选效果。此时建议通过切胶纯化的方案进行长度分选。

样品和磁珠的体积比对于分选效果至关重要,应尽可能保持样本初始体积和移液体积的准确性。

4. 样品预处理

如在 $Adapter\ Ligation$ 产物纯化之后进行长度分选,样品体积应为 $100\ \mu l$,不足时使用 ddH_2O 补齐;如在 $Library\ Amplification$ 之后进行长度分选,样品体积应为 $100\ \mu l$,不足时使用 ddH_2O 补齐;如不对样品进行体积预处理,也可按样品实际体积等比例调整磁珠用量。但样品体积太小会导致移液误差增大,进而影响分选的准确性。因此,不推荐对体积 $<50\ \mu l$ 的样品直接进行分选。

- 5. 分选方案[参考表4确定X和Y的值]
- 5.1. 磁珠平衡至室温后,涡旋振荡混匀GDSPure DNA Selection Magbeads。
- 5.2. 吸取X μl GDSPure DNA Selection Magbeads至上述100 μl产物中,使用移液器轻轻吹打10次充分混匀,室温静置5min。
- 5.3. 将PCR管短暂离心并置于磁力架中分离磁珠和液体。待溶液澄清后(约5 min),小心转移上清至新PCR管中,丢弃磁珠。
- 5.4. 吸取Y μl GDSPure DNA Selection Magbeads至上清中,用移液器轻轻吹打10次充分混匀。室温孵育5 min。
- 5.5. 将PCR管短暂离心并置于磁力架中分离磁珠和液体。待溶液澄清后(约5 min),小心移除上清。

- 5.6. 保持PCR管在磁力架上,加入 200 µl 80%新鲜配制的乙醇溶液,请勿吹打磁珠。室 温静置30 sec, 用移液器吸去上清, 弃上清。
- 5.7. 重复步骤 5.6 一次。最后一次洗涤完成时应尽量吸取干净洗涤液。
- 5.8. 保持PCR管在磁力架上, 自然风干至磁珠表面无明显光泽。
- 注意:该步骤应避免磁珠干燥过度而影响洗脱效率.磁珠表面有裂痕即代表干燥过度。
- 5.9. 将PCR管从磁力架上取下, 进行洗脱:

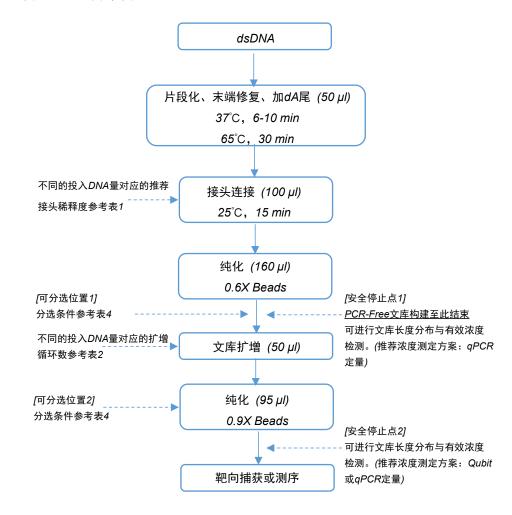
如纯化产物不进行靶向捕获: 向管中加入22.5 μ/洗脱缓冲液 (10mM Tris-HCl, pH8.0-8.5) 或ddH₂O,用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5 min。将 PCR管置于磁力架上至溶液变得澄清,将20 ul上清液转移到新的EP管中。

如纯化产物进行靶向捕获:向管中加入 $22.5\,\mu$ I ddH_2O ,用移液器轻轻反复吹打,使磁珠和 溶液充分混合均匀, 室温静置 3-5 min。将PCR管置于磁力架上至溶液变得澄清, 将20 ul 上清液转移到新的EP管中。

附二: 多样本片段化方案

当样本数量较多,且样本中含有EDTA时,可尝试将样本使用同样的溶剂稀释到相同的浓 度,保证多个样本加入的体积相同,即可加入等体积的Neutralization Buffer。以下表为例, 配制反应体系混合液,混匀分装合适体积到各管中后,使用排枪或自动化工作站在尽量短 的时间内完成DNA加样,然后立即置于PCR仪中进行反应,防止由于加样时间过长导致不 同样本之间片段范围差异过大。

- 1. 例如:通过计算和稀释,每个DNA样品均需加入10 µl, Neutralization Buffer均需加入 2.5 µl。按照计算所得结果稀释DNA样品,并在8连管或96孔板中按顺序排布。
- 2. 将FEA Buffer V2、FEA Enzyme Mix V2、Neutralization Buffer 取出,解冻并混匀、短 暂离心收集至管底,置于冰上备用,以下所有步骤均在冰上操作。


试剂	单个反应体积	96次反应体积
Neutralization Buffer	2.5 µl	250 μΙ
FEA Buffer V2	5 µl	500 μΙ
FEA Enzyme Mix V2	10 μΙ	1000 μΙ
ddH₂O	22.5 µl	2250 μΙ

片段化反应混合液应现用现配, 不宜长时间存放。

- 3. 使用移液器吹打或振荡混匀反应混合液,并短暂离心将反应液收集至管底。
- 4. 将反应混合液分装到反应管或96孔板中,每孔40 µl。
- 5. 使用排枪或自动化工作站,将DNA样品各10 ul在尽量短的时间内加入到各个反应孔中, 吹打混匀数次;短暂离心将反应液收集至管底,立即置于PCR仪中进行反应。

片段化反应为时间依赖的酶促反应,片段化产物大小取决于反应时间,因此多个样本操作时,应尽量缩短样本间的操 作时间差异,加入后立即混匀并进行后续反应。

图1 K015建库流程图

