

Universal DNA Library Prep Kit for Illumina 使用说明书

【产品名称】

Universal DNA Library Prep Kit for Illumina

【货号/规格】

K014-A (24 rxns); K014-B (96 rxns); K014-C (24 rxns); K014-D (96 rxns)

【产品简述】

Universal DNA Library Prep Kit for Illumina是一款专为Illumina高通量测序平台设计的文库制备试剂盒。它能够将100pg至1µg的片段化双链input DNA转化为适配Illumina平台的专用文库。作为最新升级版,该试剂盒通过改进末端修复、连接和文库扩增步骤,显著提高了对低质量模板DNA的转化效率,并减少了文库中的重复序列。该试剂盒适用于多种样本类型的PCR/PCR-Free文库构建,并且与靶向捕获流程兼容。本品经过严格的质量检测,从而确保文库制备的质量和效率。

【样本类型】

应用	样本类型	推荐投入量
全基因组测序	高质量复杂基因组	50 ng-1 μg
靶向捕获测序	高质量复杂基因组	10 ng-1 μg
全基因组/靶向捕获测序	FFPE DNA	≥50 ng
全基因组/靶向捕获测序	cfDNA/ctDNA	≥100 pg
全基因组测序	微生物基因组	1 ng-1 μg
全基因组测序(PCR-free)	高质量 DNA	≥50 ng(不分选)
		≥200 ng(分选)
ChIP-Seq	ChIP DNA	≥100 pg
靶向测序	扩增子	≥100 pg

【储存条件】

-20°C。

【组成成分】

组分	K014-A (24 rxns)	K014-B (96 rxns)	K014-C (24 rxns)	K014-D (96 rxns)
End Prep Buffer 2	168 μΙ	672 µI	168 µI	672 µI
End Prep Enzyme 2	72 µl	288 µI	72 µI	288 μΙ
Fast DNA Ligase 2	240 μΙ	4×240 μl	240 µI	4×240 μl
Fast Ligation Buffer 5	720 µl	4×720 μΙ	720 µI	4×720 μΙ
2X HIFI PCR Mix 2	600 µI	4×600 μΙ	-	-
Primer Mix 3	120 μΙ	480 μl	-	-
Control DNA (50 ng/µl)	10 μΙ	10 μΙ	-	-

备注:分选磁珠推荐使用东盛生物#NC1011 GDSPure DNA Selection Magbeads或AMPure XP beads。

【注意事项】

1. 客户可以针对 *Illumina* 测序平台选择合适的接头,接头过量将会导致接头二聚体的形成,接头不足会导致文库产出低,因此,合适的接头浓度决定了文库的浓度和质量。不同的 *DNA* 投入量对应的推荐接头浓度见下表:

表1 Adapter 推荐的使用浓度

DNA 投入量	Adapter 推荐浓度	Adapter:Insert 摩尔比*
1 μg	10 μΜ	10:1
100 ng	5-10 μM	30:1
10 ng	2 μΜ	100:1
1 ng	0.5 μΜ	200:1
100 pg	0.1 μΜ	300:1

^{*} Adapter:Insert摩尔比指的是其他来源的Adapter摩尔数和Input DNA摩尔数的比值,可参照以下公式粗略计算Input DNA摩尔数: Input DNA摩尔数(pmol)≈Input DNA质量(ng)/[0.66×Input DNA平均长度(bp)]

2. 严格控制扩增循环数对文库产出尤为重要,下表为不同的DNA投入量对应的推荐扩增循环数:

表2 不同样品投入量对应的推荐扩增循环数

Innut DNA	推荐的扩增循环数(1μg	φ¢ነ	
INPUL DINA	推存的扩增循环数(I#g	乂件)	

^{*}Adapter的质量和浓度很大程度上影响了文库的产出,尤其是低投入量的建库。应选用优质来源的Adapter,连接前用0.1X TE提前稀释成合适浓度,现配现用,保证每次加样量为固定的 5μ I,避免加样错误,并尽量避免反复冻融。

1 μg	3-5	
100 ng	6-8	
10 ng	10-13	
1 ng	13-15	
100 pg	17-19	

注: 1. 上表为使用 200bp标准 DNA测试结果, 仅供参考。

2. 如投入DNA质量较差,或建库过程中进行过长度分选,则应适当提高扩增循环数。

【标准建库流程】

A 末端修复/End Preparation

这一步骤将Input DNA末端补平,并在5'端进行磷酸化和3'端加dA尾。

1. 在灭菌200µI PCR管中配制如下反应(冰上操作):

试剂	体积
Input DNA	XμI
End Prep Buffer 2	7 μΙ
End Prep Enzyme 2	3 µl
ddH ₂ O	Το 60 μΙ

- 2. 用移液枪小心吹打混匀,短暂离心将所有液体移至管底。
- 3. 在热循环仪中进行如下反应:

温度	时间
热盖 <i>105</i> ℃	ON
20 ℃	30 min
65 ℃	30 min
4 ℃	∞

B 接头连接/Adapter Ligation

这一步骤将在End Preparation产物末端连接Adapter。

- 1. 根据Input DNA量按表1稀释Adapter至合适浓度。
- 2. 将Fast Ligation Buffer 5解冻后颠倒混匀,置于冰上备用。
- 3. 在End Preparation步骤PCR管中配制如下反应(冰上操作):

试剂	体积
末端修复产物	60 µI
Fast Ligation Buffer 5 *	30 µl

Fast DNA Ligase 2 *	10 μΙ
Adapter X	5 µl
ddH₂O	5 µl
Total	110 μΙ

^{*} Fast Ligation Buffer 5与Fast DNA Ligase 2预混后,可于4℃存放不超过24 h。

- 4. 用移液枪小心吹打混匀,短暂离心将所有液体移至管底。
- 5. 在热循环仪中进行如下反应:

温度	时间
热盖 <i>105</i> ℃	ON
20℃	15 min
4 ℃	∞

注:当Input DNA量较低时,可尝试将连接时间延长一倍。但延长反应时间可能会导致Adapter Dimer增加,必要时需同时调整Adapter使用浓度。

- 6. 使用GDSPure DNA Selection Magbeads (GDSBio, #NC1011)纯化产物:
- 6.1. 取110 µl连接产物加入合适的PCR管中。
- 6.2. 涡旋磁珠使磁珠混匀,加入88 μ I磁珠悬液,用移液器轻轻吹打10次混匀,室温静置5 min。
- 6.3. 将PCR管置于磁力架上至溶液变得澄清,用移液器吸去上清,弃上清。
- 6.4. 保持PCR管在磁力架上,加入 200 µl 80%新鲜配制的乙醇溶液,请勿吹打磁珠。室温静置30 sec,用移液器吸去上清,弃上清。
- 6.5. 重复步骤 6.4 一次。最后一次洗涤完成时应尽量吸取干净洗涤液。
- 6.6. 保持PCR管在磁力架上, 自然风干至磁珠表面无明显光泽。
- 注意: 该步骤应避免磁珠干燥过度而影响洗脱效率, 磁珠表面有裂痕即代表干燥过度。
- 6.7. 将PCR管从磁力架上取下,进行洗脱:

如纯化产物不进行双轮磁珠分选:向管中加入22.5 µl洗脱缓冲液(10mM Tris-HCl,

pH8.0-8.5),用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置3-5min。将 PCR管置于磁力架上至溶液变得澄清,将20 ul上清液转移到新的EP管中。

如纯化产物进行双轮磁珠分选:向管中加入105 µl洗脱缓冲液(10mM Tris-HCl,

pH8.0-8.5),用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置3-5min。将PCR管置于磁力架上至溶液变得澄清,将100 ul上清液转移到新的EP管中,根据表3双轮磁珠分选条件进行长度分选。

注:此处样品可于4℃稳定保存一周。长期保存置于-20℃,避免不必要的反复冻融。

C 文库扩增/Library Amplification

这一步骤将对纯化或长度分选后的Adapter Ligation产物进行PCR扩增。是否需要进行这一步骤取决于Input DNA量、Adapter是否为完整长度、应用需要等因素。如使用非完整长度 Adapter,必须进行这一步骤。如使用完整长度Adapter,当Input DNA < 50 ng时,推荐进行Library Amplification;当Input DNA ≥50 ng或者不需要进行文库扩增富集时,此步骤可不进行,直接进入文库质控/Library Quality Control。

1. 将Primer Mix 3、2X HIFI PCR Mix 2解冻后颠倒混匀,于灭菌200µl PCR管中配制如下反应(冰上操作):

试剂	体积
纯化或分选后的连接产物	20 μl
2X HIFI PCR Mix 2	25 µl
Primer Mix 3	5 μΙ
Total	50 μl

- 2. 用移液枪小心吹打混匀,短暂离心将所有液体移至管底。
- 3. 在热循环仪中进行如下反应:

5. 在然間可以下透り落下次点。		
温度	时间	循环数
98℃	45 sec	-
98℃	15 sec	
60 ℃	30 sec	根据表 2 选择适当循环数
72 ℃	30 sec	
72 ℃	1 min	-
4 ℃	∞	-

- 4. 如需进行长度分选,参考附一:双轮磁珠分选进行;如不需要进行长度分选,使用 GDSPure DNA Selection Magbeads对反应产物进行纯化:
- 4.1. 取50 µl扩增产物加入合适的PCR管中。
- 4.2. 涡旋磁珠使磁珠混匀,加入50 μ I磁珠悬液,用移液器轻轻吹打10次混匀,室温静置5 min。
- 4.3. 将PCR管置于磁力架上至溶液变得澄清,用移液器吸去上清,弃上清。
- 4.4. 保持PCR管在磁力架上,加入 200 μl 80%新鲜配制的乙醇溶液,请勿吹打磁珠。室温静置30 sec,用移液器吸去上清,弃上清。

- 4.5. 重复步骤 4.4 一次。最后一次洗涤完成时应尽量吸取干净洗涤液。
- 4.6. 保持PCR管在磁力架上, 自然风干至磁珠表面无明显光泽。
- 注意: 该步骤应避免磁珠干燥过度而影响洗脱效率, 磁珠表面有裂痕即代表干燥过度。
- 4.7. 将PCR管从磁力架上取下,进行洗脱:

如纯化产物不进行靶向捕获: 向管中加入 22.5μ l洗脱缓冲液(10mM Tris-HCl, pH8.0-8.5),用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置3-5min。将PCR管置于磁力架上至溶液变得澄清,将20 ul上清液转移到新的EP管中。

如纯化产物进行靶向捕获:向管中加入 $22.5 \mu l ddH_2O$,用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置3-5min。将PCR管置于磁力架上至溶液变得澄清,将20 ul上清液转移到新的EP管中。

注: 此处样品可于4℃稳定保存一周。长期保存置于-20℃,避免不必要的反复冻融。

D 文库质控/Library Quality Control

通常情况下,构建好的文库可通过长度分布检测和浓度检测来进行质量评价。

附一: 双轮磁珠分选

1. 为了满足不同应用的需要,建库过程中通常需要进行双轮磁珠分选以控制文库Insert Size的分布范围。分选方案执行位置的选择和优缺点参见表3。应保证分选方案执行位置的唯一性,进行两次或者两次以上的分选会导致文库复杂度和产出严重下降。

表3 分选方案执行位置选择

分选方案执行位 置	适用情况	优点	缺点	适用样本列举
End Preparation	Input DNA量充足,但	分选产物长度分布集	DNA损失	Fragmentation不充分
之前	分布范围宽或主峰与	中;能准确控制Input	大; 文库分	或过度的基因组 <i>DNA</i>
	预期文库Insert Size	DNA量;能进一步提高	布范围略	
	不一致;Input DNA纯	Input DNA纯度,提高	宽a	
	度较差	建库成功率		
Adapter Ligation	Input DNA分布范围	减少短片段DNA丢失;	文库分布	Fragmentation适度的
之后 (推荐方案)	适合且量充足6	绝大多数情况下通用	范围略宽*	基因组DNA或分布范围
				较宽的FFPE DNA
Library	Input DNA量少b	减少建库过程中Input	文库分布	cfDNA
Amplification之		DNA的损失,提高文库	范围宽 ^c	
后		复杂度		
建库过程中	Input DNA分布范围	减少建库过程中Input	无法控制	多重 <i>PCR</i> 产物、
不进行分选	已满足建库要求;	DNA的损失,提高文库	文库Insert	断裂程度较高的
	Input DNA量少	复杂度	Size	FFPE DNA

a.双轮磁珠分选效果受DNA末端情况影响,Input DNA末端的单链部分以及"Y"型Adapter的单链非互补区域会导致分选产物长度分布范围变宽。

b.推荐当Input DNA量≥50 ng时,选择在Adapter Ligation之后进行分选;当Input DNA量<50 ng或样品拷贝数有限时, 将分选置于Library Amplification之后。

c.相对于其他位置分选而言。其他位置分选产物进行Library Amplification之后,文库分布会进一步集中。

2.双轮磁珠分选是通过控制磁珠的使用量来进行DNA长度选择的。其基本原理为:第一轮磁珠结合分子量较大的DNA,通过丢弃磁珠去除这部分产物;第二轮磁珠结合剩余产物中分子量较大的DNA,通过丢弃上清去除分子量较小的DNA。初始样品中的很多组分都会干扰双轮磁珠分选效果。因此,当分选方案执行位置不同时,双轮磁珠使用量也不尽相同。可根据预期文库Insert Size和分选方案执行位置在表4中选择最适分选参数。

表4 文库长度分选

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	磁珠轮数	预期文库大小(bp)								
│ 分选方案执行位置与条件 │		200	250	300	350	400	450	500	550	700
末端修复之前分选	一轮XµI	98	88	77	66	60	57	55	53	47
<i>(</i> 样品体积补至110 μl)	二轮YµI	22	22	22	22	22	17	17	17	13
接头连接之后分选	一轮XµI	75	72	65	62	58	56	55	/	/
<i>(</i> 样品体积 <i>110 μl)</i>	二轮YµI	22	17	17	13	13	11	11	/	/
文库扩增之后分选	一轮XµI	77	69	61	55	51	50	48	/	/
<i>(</i> 样品体积补至110 μl)	二轮YµI	22	22	22	22	22	22	17	/	/

3. 当使用非完整长度Adapter时,连接之后的分选方案执行条件与完整Adapter不同,此时可根据下表选择最适分选参数。

八水子克比仁仁罗卜左丛	磁珠轮数	预期文库大小(bp)							
分选方案执行位置与条件		200	250	300	350	400	450	500	
接头连接之后分选	一轮XµI	99	83	72	66	60	58	55	
(样品体积110 μl)	二轮YµI	22	22	22	22	22	22	20	

使用磁珠进行长度分选时,Insert Size越大最终产物分布越宽。当Insert Size > 700 bp时,双轮磁珠几乎不具有分选效果。此时建议通过切胶纯化的方案进行长度分选。

样品和磁珠的体积比对于分选效果至关重要,应尽可能保持样本初始体积和移液体积的准确性。

4. 样品预处理

如在 $End\ Preparation$ 之前进行长度分选,样品体积应为 $110\ \mu l$,不足时使用 ddH_2O 补齐;如在 $Adapter\ Ligation$ 产物纯化之后进行长度分选,样品体积应为 $110\ \mu l$,不足时使用 ddH_2O

补齐;如在Library Amplification之后进行长度分选,样品体积应为 $110~\mu$ l,不足时使用 ddH_2O 补齐;如不对样品进行体积预处理,也可按样品实际体积等比例调整磁珠用量。但 样品体积太小会导致移液误差增大,进而影响分选的准确性。因此,不推荐对体积 $<50~\mu$ l 的样品直接进行分选。

- 5. 分选方案/参考表4确定X和Y的值/
- 5.1. 磁珠平衡至室温后,涡旋振荡混匀GDSPure DNA Selection Magbeads。
- 5.2. 吸取X μl GDSPure DNA Selection Magbeads至上述110 μl产物中,使用移液器轻轻吹打10次充分混匀、室温静置5min。
- 5.3. 将PCR管短暂离心并置于磁力架中分离磁珠和液体。待溶液澄清后(约5 min),小心转移上清至新PCR管中,丢弃磁珠。
- 5.4. 吸取Y μl GDSPure DNA Selection Magbeads至上清中,用移液器轻轻吹打10次充分混匀。室温孵育5 min。
- 5.5. 将PCR管短暂离心并置于磁力架中分离磁珠和液体。待溶液澄清后(约5 min),小心移除上清。
- 5.6. 保持PCR管在磁力架上,加入 200µl 80%新鲜配制的乙醇溶液,请勿吹打磁珠。室温静置30s,用移液器吸去上清,弃上清。
- 5.7. 重复步骤 5.4 一次。最后一次洗涤完成时应尽量吸取干净洗涤液。
- 5.8. 保持PCR管在磁力架上, 自然风干至磁珠表面无明显光泽。
- 注意: 该步骤应避免磁珠干燥过度而影响洗脱效率. 磁珠表面有裂痕即代表干燥过度。
- 5.9. 将PCR管从磁力架上取下,进行洗脱:

如纯化产物不进行靶向捕获: 向管中加入22.5µl洗脱缓冲液(10mM Tris-HCl, pH8.0-8.5),用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5min。将PCR管置于磁力架上至溶液变得澄清,将20ul上清液转移到新的EP管中。

如纯化产物进行靶向捕获:向管中加入 22.5μ l ddH_2O ,用移液器轻轻反复吹打,使磁珠和溶液充分混合均匀,室温静置 3-5min。将PCR管置于磁力架上至溶液变得澄清,将20ul上清液转移到新的EP管中。

附二: cfDNA建库方案

cfDNA (游离DNA)是一种来源于血液的碎片化DNA,具有高度片段化(约180 bp)、含量低等显著特点,在无创产前诊断(NIPT)以及液体活检(ctDNA检测)等领域具有极高的检测价值。注意事项:

1. Input DNA特指投入到End Preparation的DNA, 体积≤50 μI。

- 2. cfDNA本身高度片段化,不需要进行Fragmentation。
- 3. 为保证建库质量,推荐对cfDNA模板进行长度分布(2100 Bioanalyzer)和浓度检测(Qubit)。

建库流程:

步骤一: End Preparation (参照A/End Preparation)

Input DNA量: 100 pg - 100 ng。

步骤二: Adapter Ligation (参照B/Adapter Ligation)

Adapter: 根据表1预先稀释。

Clean up: 采用0.8X磁珠纯化, 22.5 μ/洗脱液洗脱DNA, 移取20 μ/上清进行下一步骤。

步骤三: Library Amplification (参照C/Library Amplification)

循环数:参照表2,根据文库产出需求自行调整。

Clean up: cfDNA文库是否进行长度分选由样本情况与数据分析需要决定。

▲如不进行双轮磁珠分选:采用1X磁珠纯化, 22.5μ /洗脱液洗脱DNA,移取 20μ /上清至新EP管中,-20°C保存。

▲如进行双轮磁珠分选:采用0.73X/0.25X双轮磁珠分选, 22.5μ l洗脱液洗脱DNA,移取 20μ l上清至新EP管中,-20 ℃保存。

步骤四: Library Quality Control

文库浓度测定:

推荐使用荧光染料法(Qubit或PicoGreen)或qPCR绝对定量法进行文库浓度测定。 文库长度分布检测:

通过Agilent 2100 Bioanalyzer进行长度分布检测。

附三: FFPE DNA建库方案

FFPE DNA是从福尔马林固定石蜡包埋(Formalin-Fixed and Parrffin-Embedded, FFPE) 的切片中获得的DNA。

注意事项:

- 1. Input DNA特指投入到End Preparation的DNA, 体积≤50 μI。
- 2. 因组织差异、包埋质量、保存时间等因素影响,提取到的FFPE DNA质量不尽相同。使用低质量的FFPE DNA建库时应适当提高Input DNA量或增加扩增循环数。
- 3. 为了保证建库质量,推荐对FFPE DNA模板进行长度分布(Agilent 2100 Bioanalyzer)和浓度检测(Qubit)。也可使用基于qPCR法的FFPE DNA质量评价体系预先对模板进行检测。
- 4. 当FFPE DNA片段化程度不足,平均分子量偏大时,建库前需要先进行Fragmentation。

建库流程:

步骤一: End Preparation (参照A/End Preparation)

Input DNA量: ≥50 ng。

步骤二: Adapter Ligation (参照B/Adapter Ligation)

Adapter: 根据表1预先稀释。

Clean up: 采用0.8X磁珠纯化。

▲如纯化产物不进行双轮磁珠分选:用22.5 µl洗脱液洗脱DNA,移取20 µl上清。

▲如纯化产物需进行双轮磁珠分选:用 105μ 洗脱液洗脱DNA,移取 100μ 上清,

后根据表4双轮磁珠分选条件进行文库长度分选。

步骤三: Library Amplification (参照C/Library Amplification)

循环数:参照表2、根据样本质量调整。

Clean up:

▲如扩增产物不进行双轮磁珠分选:采用1X磁珠纯化, 22.5μ l洗脱液洗脱DNA,移取 20μ l上清至新EP管中, $-20 \degree$ 保存。

▲如扩增产物需进行双轮磁珠分选:用 ddH_2 O补至 $110 \mu l$,后根据表4双轮磁珠分选条件进行文库长度分选。

步骤四: Library Quality Control

文库浓度测定:

推荐使用荧光染料法(Qubit或PicoGreen)或qPCR绝对定量法进行文库浓度测定。

文库长度分布检测:

通过Agilent 2100 Bioanalyzer进行长度分布检测。

附四: 靶向捕获建库方案

以NimbleGen SegCap EZ捕获流程为例构建预捕获文库。

注意事项:

- 1. Input DNA特指投入到End Preparation的DNA、体积≤50 µI。
- 2. Input DNA范围应介于180 220 bp范围内,具体打断条件参照Covaris或其他DNA片段化设备的使用说明书。
- 3. 为保证建库质量,推荐对Input DNA进行长度分布(Agilent 2100 Bioanalyzer)和浓度检测(Qubit)。

建库流程:

步骤一: End Preparation (参照A/End Preparation)

Input DNA量:根据样本类型选择。

步骤二: Adapter Ligation (参照B/Adapter Ligation)

Adapter: 根据表1预先稀释。Adapter的选择需要参考捕获试剂中的Blocking试剂。

Clean up: 采用0.8X磁珠纯化, 105 µl洗脱液洗脱DNA, 移取100 µl上清; 后进行0.68X/

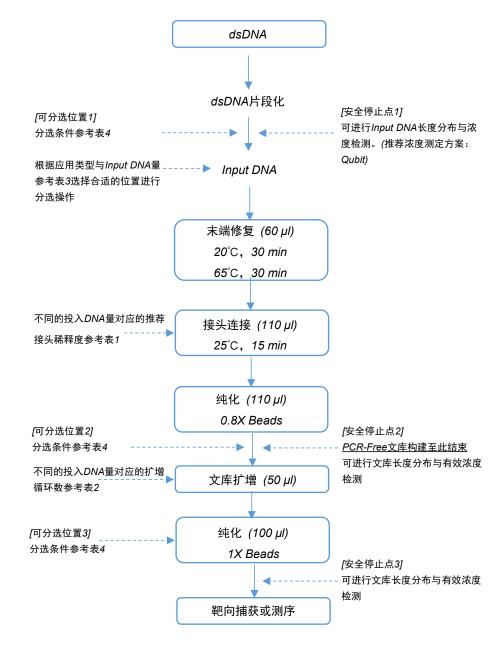
0.2X双轮磁珠分选, 22.5 µl洗脱液洗脱DNA, 移取20 µl上清进行下一步骤。

步骤三: Library Amplification (参照C/Library Amplification)

循环数: 参照表2, 推荐按上限循环数扩增。按推荐上限循环数扩增可获得≥1 µg的文库产 出;若捕获前先进行样本Pooling,应确保每个样本的文库产出 $\geq 1 \mu g/n (n = 样品数量)。此$ 时,可降低各样品扩增循环数,以提高文库复杂度、降低Duplication rates。

Clean up: 采用1X磁珠纯化, 22.5 μl ddH2O洗脱DNA, 移取20 μl上清至新EP管中。

步骤四: Library Quality Control


参照SegCap EZ Library SR User's Guide v5.1 (Chapter 4, Step 5) (Roche document number 06588786001, 09/15)进行文库质量控制。

步骤五: 靶向富集

参照SegCap EZ Library SR User's Guide v5.1第5 - 8章完成靶向捕获流程。

本品仅供科学研究使用

图1 K014建库流程图

