

PCR Mix

货号: P2011, P2012, P2013, P2014, P2015

产品简介

PCR Mix 是 2×浓缩的 PCR 扩增预混和溶液,含有 Taq DNA 聚合酶、dNTPs、缓冲液等 PCR 扩增必需组分(模板与引物除外)。使用时,仅需在扩增体系中加入模板和引物即可进行 PCR,大大简化操作过程,缩短操作时间,降低污染(加样次数减少)。同时,由于体系内含有增强剂,能够显著增强 PCR 扩增的灵敏度。扩增产物具有 3'-dA 突出端,可直接用于 TA 克隆。

Taq DNA 聚合酶是嗜热性细菌 *Thermus aquaticus* 来源的热稳定重组型 Taq DNA 聚合酶,分子量为 94 KD。 扩增片段的长度可达 10 kb(简单模板)。延伸速度为 30s/kb(70-75℃,简单模板可达 10s/kb)。该酶具有 5'→3′聚合酶活性,无 3'→5′外切酶活性。

产品组成

Component	P2011	P2012	P2013	P2014	P2015
2× PCR Mix	1 ml	1 ml× 5	1 ml× 10	1 ml× 50	1 ml× 100
超纯水	1 ml	1 ml× 5	-	-	-

本产品分含体系中包含溴酚蓝、不含溴酚蓝两类。体系中包含溴酚蓝的产品,PCR 扩增产物可直接电泳检测。 这两类产品的扩增性能无差异。如无特别说明提供体系中包含溴酚蓝的包装。

保存条件

-20℃保存2年。

质量控制

纯度检测: 经质量检测,产品不含脱氧核糖核酸内切酶、脱氧核糖核酸外切酶和核糖核酸酶污染。

功能检测: PCR 方法检测无宿主残余 DNA, 能有效扩增人基因组中的单拷贝基因。

应用举例

1. 配制反应体系

请于冰上配置反应体系,体系大小与组分用量与添加顺序可调整:

Ordinal	Component	Volume	Final concentration	
		(50 μl reaction	(50 µl reaction	
		volume)	volume)	
1	2× PCR Mix	25 µl	1×	
2	upstream primer (10 μM) ^[1]	2 µl	0.4 μΜ	
3	downstream primer (10 μM) ^[1]	2 µl	0.4 μΜ	
4	template DNA ^[2]	1-4 µl	<1µg	
5	超纯水 ^[3]	To 50 μl	-	
optional	MgCl ₂ (MgSO ₄)/PCR	Variable	-	
	Enhancer ^[4]			

- [1] 引物终浓度建议范围: 0.1-1 µM。特异性差时可降低浓度,效率低时可提高浓度。
- [2] 不同模板最佳用量不同, 部分 DNA 模板建议用量如下表(50 µl 反应体系)。

Template	人类基因组 DNA	λDNA	大肠杆菌基因组 DNA	质粒 DNA
Dosage	0.1µg-1µg	0.5ng-5ng	10ng-100ng	0.1ng-10ng

- [3] 可单独订购超纯水(Cat. #: P9021/P9022/P9023)。
- [4] 可单独订购 25mM MgCl2 (Cat. #: P9031) 和 PCR Enhancer (Cat. #: P9041)。

2. 设定反应程序进行 PCR 反应

~~~~					
Stage	Temperature	Time	Number of Cycles		
Initial Denaturation	<b>94</b> ℃	3 min	1		
Denaturation	<b>94</b> ℃	30 sec			
Annealing	55-68°С ^[1]	30 sec	25-35		
Extension	<b>72</b> ℃	Variable ^[2]			
Final Extension	<b>72</b> ℃	5-10 min	1		

- [1] 退火温度应根据 Tm 值较低的引物来设。
- [2] 延伸时间按 30s/kb 来设最佳(简单模板可达 10s/kb)。

#### 3. 分析结果

反应产物可直接进行琼脂糖凝胶电泳,通过凝胶成像设备观察目的条带的扩增情况。如有需要,可进行割胶回收。



无产物或产物量少的改进措施有: 1 调整退火温度; 2 减少抑制剂的影响,如提取的基因组 DNA 中含有抑制扩增的成分,需要高倍稀释(1: 10000)后使用; 3 采用乙醇沉降洗脱,提高模板 DNA 的纯度; 4 使用 PCR 添加剂,如 PCR Enhancer(Cat. #: P9041)、 $MgCl_2$ (Cat. #: P9031)等可提高产量。

## 操作注意事项

- 1 室温下 Taq DNA 聚合酶有一定的活性,为避免发生非特异性扩增,请于冰上配置反应体系、并且最后添加模板 DNA。
- 2 Taq DNA 聚合酶具有脱氧核苷酸转移酶活性,因此在 PCR 产物 3'末端通常会加上 1 个 多余的脱氧腺嘌呤核苷,可直接用于 TA 克隆。
- 3 碱基错误率是指在每个碱基合成过程中所掺入的错误核苷酸数目。Taq DNA 聚合酶的碱基错误率为 1×10⁻⁵。

#### 引物设计注意事项

引物长度一般在 15-30 个碱基之间;上下游引物 3'末端避免互补,避免出现 3 个以上重复的 G 或 C,或出现发夹结构,否则会产生非特异性扩增;GC 含量控制在 40-60%,且上下游引物 GC 含量尽量接近;Tm 值控制在 55-65 $^{\circ}$ C之间,且上下游引物 Tm 值尽量接近,额外附加序列(酶切位点、修饰等)是非模板匹配序列,不参与 Tm 值计算。

本品仅供科学研究使用。